## **Multi-Dimensional Imaging Systems**

Breakout Group 3

Camera AB Initio Workshop

April 28-29, 2003

Dr. Ravi Athale and Dr. Dennis Healy

Microsystems Technology Office

### **DARPA**

Distribution A, Approved for Public Release, Distribution Unlimited

## **Multidimensional Imaging**

Possible choices:

x,y,z, wavelength, polarization, temporal .... (acoustic, olfactory)

## Desired system attributes:

Adaptive

Predetection 'processing' (measure features where possible, not pixels)

Network - fine grain and coarse grain

Compact

Passive and Active modalities

Machine can be consumer of data (imaging or non-imaging)

System geometry

Must answer "What? and Where?"

## Solution before the problem?

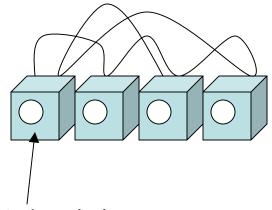
First we explored applications that might benefit from multidimensional data. Wide ranging discussions:

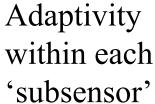
Examples: create terrain maps, tank in foliage, ATR,

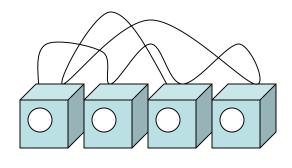
Comment: very specific tasks will yield unconventional designs

How is multidimensional done now?

- Acquire as large of a cube as possible and start processing.


'Ideal' alternative - adaptive system with variable 'g-resolution' in all dimensions.


G-resolution= generalized resolution= 'more than binning' ability to optically sum weighted measurements with no adjacency requirement


How to exploit such a sensor?

- -start coarse and refine
- -Use starting point based on a priori information

## Adaptivity mechanisms:







Adaptive networking

Or multiple cheap sensors each with different settings (e.g. FOV)

Or both

Adaptive variable resolution systems:

X,y,z:

Several 2d imagers each with variable focal length lenses for focus adjust / zoom (large index change optics – Buckley)

Some with extended depth wavefront coding

Some with ultra narrow depth (possibly adaptive wavefront coding – new MEMS)

Several 2d imagers on complicated surface – use geometry self calibration ...

# Adaptive Wavelength Emitting Sensor based on Optical Modular Elements (AWESOME)

Receiver and Illuminator are distinct modules combined in LEGO fashion.

A large array of illuminators versus an interleaved array would be two different systems

Modules: Optics (active / passive), Emitter, Receiver, INU, GPS

#### Computation

On array processing

Distributed among nodes

### Advantages of the array:

Adaptive Foveation

Robustness

Graceful degradation

Stealthiness

# Adaptive Wavelength Emitting Sensor based on Optical Modular Elements (AWESOME)

#### Emitter properties:

VCSEL Array

Tunable (wavelength, polarization)

High speed modulation (10GHz)

Beam steering

Phase locked with phase adjustment between emitters

#### Receiver properties:

Pixels or groups of pixels phase locked to emitters

Tunable (spectrum and polarization)

Randomly addressable pixels

Binning / convolutions / general purpose computations at the pixel level and groups of pixels.

# Adaptive Wavelength Emitting Sensor based on Optical Modular Elements (AWESOME)

### Challenges:

- Find \$100M
- Large amounts of data can be produced
- How to optimize the local and global processing
- Optimize communication at the local and global level
- Self calibration
- VCSEL construction
- Optics: ultra large FOV sensing
- FPA construction
- Non-commutative harmonic analysis (In the space of light rays)